382 research outputs found

    Statistical analyses on multi-scale features of monitoring data from health monitoring system in long cable supported bridges

    Get PDF
    AbstractStrain-time histories and other data acquired from a structural health monitoring system (SHMS) installed on a bridge reflect the real-time structural response of the bridge under actual service and environmental loading. It is necessary to understand the inherent features of the data if we want to have confidence in using them to assess the health state or detect potential damage in the structure. This paper aims at exploring the inherent features of strain-time histories data from SHMS in order to find out their behavior in multiple temporal scales and to obtain reliable, clean and normalized data at the dominant scale of stresses inducing fatigue. Firstly, the strain history data from SHMS installed on Runyang Yangtze Bridges (RYB) were analyzed within three typical temporal scales to explore their different characteristics and their own cut-off frequency which span different orders of magnitude. Then, based on the description of the multi-scale features of the monitored data, a further investigation of the dominant scale controlling fatigue failures was carried out. The result shows that, the strain data corresponding to the typical temporal scales of 106, 103 and 100 sec are caused by temperature change, with cut-off frequency fc,1 in the 10−2 Hz range, by train load, with fc,2 in the 10−1 Hz range and by truck load, with fc,3 in the 100 Hz range. Noise shows significant coupling effect when coarse scale strain data are used for the evaluation, which may lead to significant error even it is in small level acceptable in engineering analyses

    Assessment and Spatiotemporal Variation Analysis of Water Quality in the Zhangweinan River Basin, China

    Get PDF
    AbstractSpatiotemporal variation analysis of water quality and identification of water pollution sources in river basins is very important for water resources protection and sustainable utilization. In this study, fuzzy comprehensive analysis and two statistical methods including cluster analysis and seasonal Kendall test method were used to evaluate the spatiotemporal variation of water quality in the Zhangweinan River basin. The results for spatial cluster analysis and assessment on water quality at 19 monitoring sites indicated that water quality in the Zhangweinan River basin could be classified into two regions according to pollution levels. One is the Zhang River basin located in northwest of the Zhangweinan River basin where water quality is good. Another one includes the Wei River and eastern plain of the Zhangweinan River basin, and the water pollution in this region is serious, where the pollutants from point sources flow into the river and the water quality changes greatly. The results of temporal cluster analysis and seasonal Kendall test indicated that the sampling periods may be classified into three periods during 2002-2009 according to water quality. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends was detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei River basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. These results provide may useful information for better pollution control strategies in the Zhangweinan River basin

    Characteristics and Sensing Properties of the La1-xNdxCo0.3Fe0.7O3 System for CO Gas Sensors

    Get PDF
    A series of nanostructured La1-xNdxCo0.3Fe0.7O3 perovskite-type (x ranging from 0 to 1) were prepared using the co-precipitation method. CO gas sensing properties of La1-xNdxCo0.3Fe0.7O3 sensors were performed. La0.7Nd0.3Co0.3Fe0.7O3 sensor showed the highest response at 250 °C (S=52.8)

    Kir5.1 regulates Nedd4-2-mediated ubiquitination of Kir4.1 in distal nephron.

    Get PDF
    Kir4.1/5.1 heterotetramer participates in generating the negative cell membrane potential in distal convoluted tubule (DCT) and plays a critical role in determining the activity of Na-Cl cotransporter (NCC). Kir5.1 contains a phosphothreonine motif at its COOH terminus (AA249-252). Coimmunoprecipitation showed that Nedd4-2 was associated with Kir5.1 in HEK293 cells cotransfected with Kir5.1 or Kir4.1/Kir5.1. GST pull-down further confirmed the association between Nedd4-2 and Kir5.1. Ubiquitination assay showed that Nedd4-2 increased the ubiquitination of Kir4.1/Kir5.1 heterotetramer in the cells cotransfected with Kir4.1/Kir5.1, but it has no effect on Kir4.1 or Kir5.1 alone. Patch-clamp and Western blot also demonstrated that coexpression of Nedd4-2 but not Nedd4-1 decreased K currents and Kir4.1 expression in the cells cotransfected with Kir4.1 and Kir5.1. In contrast, Nedd4-2 fails to inhibit Kir4.1 in the absence of Kir5.1 or in the cells transfected with the inactivated form of Nedd4-2 (Nedd4-2C821A). Moreover, the mutation of TPVT motif in the COOH terminus of Kir5.1 largely abolished the association of Nedd4-2 with Kir5.1 and abolished the inhibitory effect of Nedd4-2 on K currents in HEK293 cells transfected with Kir4.1 and Kir5.1 mutant (Kir5.1T249A). Finally, the basolateral K conductance in the DCT and Kir4.1 expression is significantly increased in the kidney-specific Nedd4-2 knockout or in Kir5.1 knockout mice in comparison to their corresponding wild-type littermates. We conclude that Nedd4-2 binds to Kir5.1 at the phosphothreonine motif of the COOH terminus, and the association of Nedd4-2 with Kir5.1 facilitates the ubiquitination of Kir4.1, thereby regulating its plasma expression in the DCT

    Acoustic phonon transport through a double-bend quantum waveguide

    Full text link
    In this work, using the scattering matrix method, we have investigated the transmission coefficients and the thermal conductivity in a double-bend waveguide structure. The transmission coefficients show strong resonances due to the scattering in the midsection of a double-bend structure; the positions and the widths of the resonance peaks are determined by the dimensions of the midsection of the structure. And the scattering in the double-bend structure makes the thermal conductivity decreases with the increasing of the temperature first, then increases after reaches a minimum. Furthermore, the investigations of the multiple double-bend structures indicate that the first additional double-bend structure suppresses the transmission coefficient and the frequency gap formed; and the additional double-bend structures determine the numbers of the resonance peaks at the frequency just above the gap region. These results could be useful for the design of phonon devices.Comment: 13 pages, 6 figures, elsart.cls is use

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Coupling between planes and chains in YBa2Cu3O7 : a possible solution for the order parameter controversy

    Full text link
    We propose to explain the contradictory experimental evidence about the symmetry of the order parameter in YBa2Cu3O7YBa_{2}Cu_{3}O_{7} by taking into account the coupling between planes and chains. This leads to an anticrossing of the plane and chain band. We include an attractive pairing interaction within the planes and a repulsive one between planes and chains, leading to opposite signs for the order parameter on planes and chains, and to nodes of the gap because of the anticrossing. Our model blends s-wave and d-wave features, and provides a natural explanation for all the contradictory experimentsComment: 13 pages, revtex, 2 uucoded figure

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (XX^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all XX^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the XX^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different XX^- states unbind are surprisingly small compared to the well width, the observation of strongly bound XX^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of XX^- recombination

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    Computationally efficient 3D analytical magnet loss prediction in surface mounted permanent magnet machines

    Get PDF
    This study proposes a computationally efficient analytical method, for accurate prediction of three-dimensional (3D) eddy current loss in the rotor magnets of surface mounted permanent magnet (SPM) machines considering slotting effect. Subdomain model incorporating stator tooth tips is employed to generate the information on radial and tangential time-derivatives of 2D magnetic field (eddy current sources) within the magnet. The distribution of the eddy current sources in 3D is established for the magnets by applying the eddy current boundary conditions and the Coulomb gauge imposed on the current vector potential. The 3D eddy current distributions in magnets are derived analytically by employing the method of variable separation and the total eddy current loss in the magnets are subsequently established. The method is validated by 3D time-stepped finite element analysis for 18-slot, 8-pole and 12-slot, 8-pole permanent magnet machines. The eddy current loss variations in the rotor magnets with axial and circumferential number of segmentations are studied. The reduction of magnet eddy current loss is investigated with respect to harmonic wavelength of the source components to suggest a suitable segmentation for the rotor magnets in SPM machines
    corecore